Approaching Green’s Theorem via Riemann Sums

نویسندگان

  • JENNIE BUSKIN
  • SCOTT A. TAYLOR
چکیده

We give a proof of Green’s theorem which captures the underlying intuition and which relies only on the mean value theorems for derivatives and integrals and on the change of variables theorem for double integrals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAT125B Lecture Notes

1 Riemann integration 2 1.1 Partitions and Riemann sums . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 A criterion for integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Upper and Lower Riemann Sums . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 The refinement of a partition . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Properties of upper an...

متن کامل

Riemann Hypothesis and Short Distance Fermionic Green’s Functions

We show that the Green’s function of a two dimensional fermion with a modified dispersion relation and short distance parameter a is given by the Lerch zeta function. The Green’s function is defined on a cylinder of radius R and we show that the condition R = a yields the Riemann zeta function as a quantum transition amplitude for the fermion. We formulate the Riemann hypothesis physically as a...

متن کامل

Math 2400 Lecture Notes: Integration

1. The Fundamental Theorem of Calculus 1 2. Building the Definite Integral 5 2.1. Upper and Lower Sums 5 2.2. Darboux Integrability 7 2.3. Verification of the Axioms 10 2.4. An Inductive Proof of the Integrability of Continuous Functions 12 3. Further Results on Integration 13 3.1. The oscillation 13 3.2. Discontinuities of Darboux Integrable Functions 14 3.3. A supplement to the Fundamental Th...

متن کامل

Residue Theorem for Rational Trigonometric Sums and Verlinde’s Formula

We present a compact formula computing rational trigonometric sums. Such sums appeared in the work of E. Verlinde on the dimension of conformal blocks in WessZumino-Witten (WZW) theory. As an application, we show that a formula of J.-M. Bismut and F. Labourie for the Riemann-Roch numbers of moduli spaces of flat connections on a Riemann surface coincides with Verlinde’s expression.

متن کامل

Midterm Examination Solutions for Ma 108b Winter

By Theorem 2.1 the product φ1φ2 is of bounded variation and by Theorem 2.24 all three Riemann–Stieltjes integrals involved exist as the limit of Riemann–Stieltjes sums as |Γ| → 0. In particular we can find a δ1 > 0 such that ∣∣∣∣∫ b a fφ2 dφ1 −RΓ(fφ2, φ1) ∣∣∣∣ < ε , ∣∣∣∣∫ b a fφ1 dφ2 −RΓ(fφ1, φ2) ∣∣∣∣ < ε for all partitions with |Γ| < δ1. Let Γ = {xi}i=0 be any partition of [a, b] with intermed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013